FREE-FALL

How Fast, How Far, How quickly How Fast Changes

\square The confusion occurs in analyzing the motion of objects came about from mixing up "how fast" and "how far"
\square When we want to specify how fast something freely falls from rest after a certain elapsed time, we are talking about speed (velocity)
\square Equation $=v=g \dagger$
\square When we want to know how far something will fall, this is distance
\square equation $=d=1 / 2 \mathbf{g t}^{2}$
\square One of the most confusing concepts encountered is acceleration, or "how quickly does speed or velocity change"
\square What makes it so complex is that it is a rate of a rate
\square It took people 2000 years from the time of Aristotle to Galileo to achieve a clear understanding of motion

Free Fall: How Fast

\square An apple falls from a tree-Does it accelerate?
\square We know it starts from rest and gains speed as it falls
\square Because—it would be safe to catch if it fell from a few meters, but not if it fell from a high flying balloon
\square Thus, the apple must gain more speed during the time it drops from a great height than during the shorter time it takes to drop a meter
\square Gravity causes the apple to accelerate downward once it begins falling
\square In real life, air resistance affects the acceleration of a falling object
\square For the time being, let's imagine there is no air resistance and that gravity is the only thing affecting a falling object
\square This is termed free fall
\square Freely falling objects are affected only by gravity

Elapsed time (seconds)	Instantaneous Speed (m/s)
0	0
1	10
2	20
3	30
4	40
.	.
	$10 \dagger$

\square The acceleration of an object falling under conditions where air resistance is negligible is about $10 \mathrm{~m} / \mathrm{s}^{2}$
\square For free fall, it is customary to use the letter g to represent the acceleration because the acceleration is due to gravity
\square Instantaneous speed $=$ acceleration \times elapsed time
$\square V=g t$
\square What would the speedometer reading on a falling rock be 4.5 seconds after it drops from rest?

- $45 \mathrm{~m} / \mathrm{s}$
$\square 8$ seconds?
$\square 80 \mathrm{~m} / \mathrm{s}$
$\square 15$ seconds?
$\square 150 \mathrm{~m} / \mathrm{s}$
\square Now consider an object thrown straight up
\square It continues to move upward for a while, then it come back down
\square At the highest point, when the object is changing its direction of motion from upward to downward, its instantaneous speed is zero
\square It then starts downward, just as if it was dropped from rest
\square During the upward part of this motion, the object slows from its initial upward velocity to zero velocity
\square We know that the object is accelerating because its velocity is changing
\square How much does its speed decrease each second?
\square The speed decreases at the same rate it increases when it moves downward-
$\square 10$ meters per second each second
$\mathrm{m}=1000 \mathrm{lgg}$

$F_{g r a y}=10000 \mathrm{H}$
$\mathrm{a}=\frac{\mathrm{F}_{\text {net }}}{\mathrm{m}}=\frac{10 \mathrm{~N}}{11 \mathrm{gg}}$
$\mathrm{A}=10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$

Free-Fall: How Far

\square How fast something moves is entirely different from how far it moves-speed and distance are not the same
\square At the end of the $1^{\text {st }}$ second, the falling object has an instantaneous speed of $10 \mathrm{~m} / \mathrm{s}$. Does this mean it falls a distance of 10 meters during the first second?

Elapsed time (seconds)	Instantaneous Speed $(\mathbf{m} / \mathbf{s})$
0	0
1	10
2	20
3	30
4	40

\square No. Here's where the difference between instantaneous and average speed comes in
\square If the object falls 10 meters the first second, its instantaneous speed is $10 \mathrm{~m} / \mathrm{s}$ at the end of the second.
\square But we know the speed began at zero and took a full second to get to $10 \mathrm{~m} / \mathrm{s}$
\square So the average speed is between zero and $10 \mathrm{~m} / \mathrm{s}$
\square For any object moving in a straight line with constant acceleration, we find the average speed the same way we find the average of two numbers-divide by 2
\square So adding the initial speed of zero and the final speed of $10 \mathrm{~m} / \mathrm{s}$ and then dividing by 2 , we get 5 m / s
\square During the $1^{\text {st }}$ second, the object has an average speed of $5 \mathrm{~m} / \mathrm{s}$
\square During the span of the second time interval, the object begins at $10 \mathrm{~m} / \mathrm{s}$ and ends at $20 \mathrm{~m} / \mathrm{s}$. What is the average speed of the object during this 1 second interval? What is the acceleration?
$\square(10 \mathrm{~m} / \mathrm{s}+20 \mathrm{~m} / \mathrm{s}) / 2=30 \mathrm{~m} / \mathrm{s} / 2=15 \mathrm{~m} / \mathrm{s}$
$\square(20 \mathrm{~m} / \mathrm{s}-10 \mathrm{~m} / \mathrm{s}) /(1 \mathrm{~s})=10 \mathrm{~m} / \mathrm{s}^{2}$

Elapsed Time (s)
0
1 5

2 20
3
45
4 80
$5 \quad 125$

T
$1 / 2 \mathrm{gt}^{2}$
-These distances form a mathematical pattern: at the end of time t, the object has fallen a distance d of $1 / 2 \mathbf{g t}^{2}$

Time (s)	Average Velo
0	0
1	5
2	15
3	25
4	35
556	45

\square An apple drops from a tree and hits the ground in one second. What is its speed upon striking the ground? What is its average speed during the one second? How high above ground was the apple when it first dropped?
$\square \mathrm{V}=\mathrm{gt}=10 \mathrm{~m} / \mathrm{s}^{2} \times 1$ second $=10 \mathrm{~m} / \mathrm{s}$
\square Average $=(0+10 \mathrm{~m} / \mathrm{s}) / 2=5 \mathrm{~m} / \mathrm{s}$
$\square d=1 / 2 \mathrm{gt}^{2}=5 \mathrm{~m} / \mathrm{s}^{2}(1 \mathrm{sec})=5 \mathrm{~m}$
\square OR
$\square d=$ average speed $\times t=5 \mathrm{~m} / \mathrm{s} \times 1 \mathrm{sec}=5 \mathrm{~m}$

Reaction Time

\square Hold a dollar bill so that the midpoint hangs between your fingers. Challenge yourself to catch it be snapping your fingers shut when someone releases it. The bill won't be caught!
\square It takes at least $1 / 7$ second for nerve impulses to travel from the eye to the brain to the fingers.
\square According to the equation $d=1 / 2 \mathrm{gt}^{2}$, in only $1 / 8$ second the bill falls 8 centimeters-half the length of the bill

Graphs of Motion

\square Equations and tables are not the only way to describe relationships such as velocity and acceleration
\square We use graphs that visually describe relationships

Speed v. time for a Freely Falling Object

\square For every increase of 1 second, there is the same $10 \mathrm{~m} / \mathrm{s}$ increase in speed
\square The curve is a straight line, so its slope is constant
\square On this graph the slope measures speed per time, or acceleration
\square The slope indicates that the acceleration is constant
\square If the acceleration were greater, the slope of the graph would be steeper

Distance v. Time for a Freely Falling Object

\square The result is a curved line
\square The curve shows the relationship between distance traveled and time is not linear
\square When we double t, we do not double d; we quadruple it-distance depends on time squared
\square A curved line also has a slope, this graph has a certain slant or steepness at every point-it changes from one point to the next
\square It is speed, the rate at which distance is covered per unit of time
\square In this graph the slope steepens (becomes greater) as time passes-speed increases as time passes

Air Resistance and Falling Objects

\square Air resistance noticeable alters the motion of things like falling feathers or pieces of paper
\square Air resistance less noticeably affects the motion of more compact objects like stones and baseballs
\square In many cases the effect of air resistance is small enough to be neglected

Hang Time

\square Read page 22 in your book
\square Now calculate your own personal hang time

